If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-31=0
a = 1; b = 1; c = -31;
Δ = b2-4ac
Δ = 12-4·1·(-31)
Δ = 125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{125}=\sqrt{25*5}=\sqrt{25}*\sqrt{5}=5\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-5\sqrt{5}}{2*1}=\frac{-1-5\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+5\sqrt{5}}{2*1}=\frac{-1+5\sqrt{5}}{2} $
| 14x-40=44 | | –16=4j | | 1890=w^2-3w | | x=13+x/2 | | x^2-9=(x-2)(x-5) | | (w)(w+10)=39 | | m-21=58 | | 4+2r+(3r+2)+2(r+1)=43 | | 19−4v=11 | | 5x-5=-6x-12 | | 4(2x-4)-5x=4=-30 | | 3x–4x=–8+x | | 7q=10+9q | | 10x-12x=6x | | (-n-8)=-2 | | 5x+17-3x=-4x-23 | | x2+13x+8=0 | | 10/x+5=7/2+x | | 16-7w=2 | | x^2-1.28x-1.28=0 | | 3a÷6=4 | | 6x-4(4x)+10/3=5(x+1) | | 26^9x+5=1 | | 2n−8=6 | | 3x-11=4x+9 | | W+w+(w+7)+(w+7)=114 | | 22.75/a=-3.5 | | 5p-4=17+2p | | 2x5/3=256 | | x*3/4x=768 | | 3z+2z=2 | | x7=3x+1 |